
LaTeX Reference

Floris Westerman

January 9, 2023

This document is meant as a reference for basic LATEX functionality. It should be sufficient to write
basic reports and documents for the first years of your study. I the first chapter, the basic workings
of LATEX will be explained and I will guide you on starting to use it. After that, the basics of text
formatting and mathematics will be discussed. Later on, more advanced subjects such as tables,
matrices, figures and graphs are listed. In the appendix, some more complicated and involved
examples are given that can be used as templates for your own document.

In the documents, a lot of packages are mentioned. Each mention of a package is clickable and
will lead you to the list of packages that I mentioned or recommend. There, you can also find
other places where the packages are mentioned. If you want to know more about some packages,
simply Google ‘CTAN [name]’ and you’ll easily find the documentation of the package for further
reference.

In this document, I often mention the syntax of commands. Such a syntax may look like
\command[<options>]{<name>}. Here, parts between <> are variable parts that you have to
fill in yourself; a description is given of what should be put in. These <> should be omitted in your
final code, the rest of the code should be exactly as it was given.

I plan to extend this document over time with more sections, such as making code listings and
doing some chemistry. Therefore, when sharing the document, please share the link and not the
pdf itself you will always get the latest version. The latest version can always be downloaded from
https://floriswesterman.nl/LaTeXReference.pdf.

For any comments and remarks or if you’ve found a mistake, please contact me at
me@floriswesterman.nl.

1

https://floriswesterman.nl/LaTeXReference.pdf
mailto:me@floriswesterman.nl

Contents
1 Setting up 3

1.1 Installation . 3
1.1.1 Windows, Linux, OS X . 3
1.1.2 Online . 3

1.2 Structure of a LATEX document . 3
1.2.1 Document class . 3
1.2.2 Packages . 3
1.2.3 Environments . 4
1.2.4 Example document . 4

2 Text formatting 5
2.1 Titling . 5
2.2 Text sizes . 5
2.3 Text styles . 6
2.4 Paragraphs and alignment . 6
2.5 Lists . 7
2.6 References . 8

3 Mathematics 10
3.1 Environments . 10
3.2 Symbols . 10
3.3 Functions and other operations . 12
3.4 Brackets . 12
3.5 Custom alphabets . 13
3.6 Accents . 13
3.7 The physics package . 14
3.8 The siunitx package . 15

4 Tables & Matrices 16
4.1 Columns . 16
4.2 Rows and lines . 17
4.3 Spanning . 18
4.4 Matrices . 18

5 Figures 20
5.1 Floating environments . 20
5.2 Wrapping text . 21
5.3 Captions . 21
5.4 Subfigures . 22
5.5 Including pictures . 23
5.6 Float barriers . 23

6 Graphs 24
6.1 Basics . 24
6.2 Function plots . 25

6.2.1 2D plots . 25
6.2.2 3D plots . 26

6.3 Data plots . 27
6.3.1 Simple coordinates . 27
6.3.2 External source . 28

6.4 Error bars . 28
6.5 Fitting a function . 29

2

6.5.1 Setting up gnuplot . 29
6.5.2 Calling gnuplot . 30
6.5.3 Making a fit . 30
6.5.4 Incorporating error bars . 31

6.6 Legend entries . 31
6.7 Improving performance . 33

6.7.1 Using LuaLaTeX . 33
6.7.2 Cache your figures . 33

3

1 Setting up
Before you can start using LATEX there are some things to set up, install and configure. Also you’ll
need some basic content in your document before you can start actually adding your text.

1.1 Installation
1.1.1 Windows, Linux, OS X

There are multiple ways to compile .tex files into pdf’s. On all common platforms (Windows,
Linux, OS X) it is easiest to install MiKTeX as your distribution manager - the program that
manages all packages and other prerequisites to use LATEX.

MiKTeX also already includes a very basic editor. For more advanced functionality, such as code
completion, highlighting and others, there are multiple editors available. I’d advise using TeXstudio,
a versatile editor that features a lot of functionality and other options.

For OS X there is also TeXpad, that integrates both the distribution manager and the editor in one
very nice program. One disadvantage is that this software is paid and will cost you around e23.

1.1.2 Online

It is also possible to work with LATEX online. This saves you the trouble of installing programs
on your computer and enables you to collaborate directly with others; it works like Google Docs
so you can work on documents simultaneously. The main disadvantage is that these websites are
generally quite slow to work with, building is often very slow with larger documents taking up to
a minute to compile and of course it’s required to have an internet connection. Commonly used
websites are Overleaf and ShareLaTeX.

1.2 Structure of a LATEX document
1.2.1 Document class

A LATEX document has a general style and set-up. Firstly, each document has a documentclass set,
a set of basic styles and commands available. Commonly used styles are book, article and letter.
These all have their own default font sizes, whitespace sizes, etc. You can also download one of
the many styles available on the internet, some specifically designed to make resumés, articles for
specific scientific journals and many more.

A document class is set using the command \documentclass[<options>]{<name>} where your
options are specific options for your document class. The options available differ for each class, but
you can generally set the paper and font size you’re working with. In between the curly brackets
you put the name of the document class. This is a common pattern in LATEX, options are generally
placed in between square brackets in front or after the curly brackets with the actual content.

1.2.2 Packages

After that, you’ll generally define the packages to be loaded. Packages are the add-ons for LATEX,
you can add a lot of functionality with them. They enable you to go past the standard feature
set of LATEX and make beautiful graphs, tables and lists. You can make your text more colorful
or change the size of anything you want. When working with MiKTeX, these packages will be
downloaded the first time you use them, after that they’re permanently loaded.

Packages can be included using the \usepackage[<options>]{<name>} command. Again, within
the square brackets you can put your options and in between the curly brackets you put the name
of the package. In this document I’ll sometimes state that some command requires some package
or some option, this is how you do that.

4

https://miktex.org/download
https://www.texstudio.org/
https://www.texpad.com/
https://www.overleaf.com/
https://www.sharelatex.com/

1.2.3 Environments

All of the above together is called your preamble. After this will be the main content of your
document. This content is divided into so-called environments, ‘blocks’ of content with a spe-
cific purpose. Environments are opened, or started, by \begin{<environment>} and ended by
\end{<environment>} where environment is the name of your environment. The content in be-
tween both statements will be inside that environment. The main environment is document, it
conatins all content of your document. There are separate environments for maths, your abstract,
figures, tables, graphs, lists, etc.

1.2.4 Example document

Below is an example of a simple document in LATEX. It’ll make a document with document class
article and consist of a title (the commands \title{}, \author{} and \maketitle are defined
in the document class) and a short text.

Simple LATEX document
1 \documentclass[a4paper,10pt]{article}

2
3 \usepackage{a4wide}

4
5 \title{My fancy report}

6 \author{Floris Westerman}

7
8 \begin{document}

9 \maketitle

10 This is a nice document

11 \end{document}

5

2 Text formatting
2.1 Titling
Titling can be done using the \section, \subsection and \subsubsection commands. Each
‘sub’ indicates a level in your headers. All of them will be included in the table of contents
(\tableofcontents). There are multiple versions:

Command Description

\section{Title} Just a normal section.

\section[Short title]{Very long title}

The short title in between [] will be put in the
table of contents, the long title will be shown
in the document itself.

\section*{Title}

An unnumbered section title. Useful for when
there is no ToC or when it is not relevant to
have numbering (in a smaller document).

\subsection, \subsubsection, \paragraph,
\subparagraph

Same as above, same options, but lower level
and smaller size

2.2 Text sizes
It is possible to write text in smaller and larger font sizes. The following font sizes are available:

Command Description

{\tiny Text} This is tiny text.
{\scriptsize Text} This is (super-/sub)script sized text.
{\footnotesize Text} This is footnote sized text.
{\small Text} This is small text.
{\large Text} This is large text.
{\Large Text} This is larger text.
{\LARGE Text} This is very large text.
{\huge Text} This is huge text.
{\Huge Text} This is truly huge text.

6

2.3 Text styles
There are multiple text styles, such as underlines, italics, etc. You can also change your font size.
These commands are available:

Command Description

\textbf{Text}

{\bf Text}
This text will be made boldface.

\textit{Text}

{\it Text}
This text will be made italics.

\textsl{Text}

{\sl Text}
This text will be made slanted.

\textsc{Text}

{\sc Text}
This text will be made small caps.

\textsf{Text}

{\sf Text}
This text will be made Sans Serif.

\texttt{Text}

{\tt Text}
This text will be made monospaced.

Text This text will be made superscript.
\textsubscript{Text} This text will be made subscript.
{\color{blue} Text}* This text will be made blue.
\underline{Text} This text will be made underlined.
\st{Text}** This text will be made strike-through.

* This requires the color package

** This requires the soul package

2.4 Paragraphs and alignment
New paragraphs can simply be introduced using a double enter. If you want to force an ‘enter’
without introducing a new paragraph, one can use the double backslash \\. Furthermore, text can
be justified left and right and can be centered.

7

Command Description

\begin{flushleft}

Content

\end{flushleft}

This text will be aligned on the left-hand side of the
page.

\begin{flushright}

Content

\end{flushright}

This text will be aligned on the right-hand side of the
page.

\begin{center}

Content

\end{center}

This text will be centered on the page.

\\

\newline
This forces a new line to be created.

Double enter
\par

This will create a new paragraph.

\newpage
This will force a pagebreak, so text will continue on the
next page.

By default, new paragraphs are indented on the first line. This is the standard in many reports
and articles. However, you might not like it. The easiest solution is to simply include the package
parskip, so put \usepackage{parskip} in your preamble.

2.5 Lists
It is possible to make lists with numbers and without numbers. The ‘counted’ lists use the
environment enumerate and the others use itemize. It is also possible to nest multiple lists, so a
basic example would be:

\begin{enumerate}

\item First item

\item Some sublist:

\begin{itemize}

\item Subitem

\item Subitem

\end{itemize}

\item Last item

\end{itemize}

1. First item
2. Some sublist:

• Subitem
• Subitem

3. Last item

Using the package enumitem it is also possible to do some more advanced things. The most useful
thing is to define custom labels for your items. You can do roman or letter-notation instead of
normal digits and use other shapes in the itemize or even make a sort-of key-value table. Short
overview:

8

Command Example

\item [Custom] And the text

1. First
Custom And the text!

2. Third

\begin{enumerate}[label=\alph*)]*
a) First
b) Second

\begin{enumerate}[label=\roman*)]*
i) First
ii) Second

\begin{enumerate}[label=\arabic*)]*
1) First
2) Second

\begin{enumerate*}[label=\bf(\alph*)]** Inline list: (a) first (b) second.

* This requires the enumitem package

** This requires the enumitem package with the inline option

The labels \alph*, \roman* and \arabic* are defined in the enumitem package. For itemize it is
possible to use any symbol from any library as label of a list item.

2.6 References
It is very easy to do references in LATEX. With just two lines of code you can refer to any figure,
table, section or equation in your document and the numbering will automatically be correct.
You just place a \label{<name>} command close to whatever you want to refer to and you put
\ref{<name>} at the place you want to put a reference. Here, name is a shorthand name of what
you’re referring to. In larger documents it can get difficult to distinguish equations from figures
from tables, it is common to prefix your names with things like ch: for chapters, fig: for figures
and eq: for equations. As an example:

\begin{equation}

\label{eq:einstein}

E = mc^2

\end{equation}

(..)

As we saw in equation

\ref{eq:einstein}, we have that

...

↪→

↪→

E = mc2 (1)

As we saw in equation 1, we have that ...

It is also possible to use the command \pageref{<name>} that will print the page number the
reference is on. Especially for equations, the amsmath package has define \eqref{<name>} that
prints the number with parentheses around it to easily distinguish it from other references without
putting ‘formula’ or ‘equation’ in your text all the time.

In longer documents it is also useful to include the section number in your numbering and reset
your numbering with each new section. This will prevent your numbers from getting too high

9

and it makes it more convenient to look up the references in the document. Again, amsmath has
a nice command for this: use \numberwithin{<countera>}{<counterb>} where any reference to
countera will be replaced by counterb.countera. To append all equation numbers with their
respective section number, use \numberwithin{equation}{section}. This will yield numbers like
‘(1.5)’ where 1 is the section number and 5 is the equation number within that section.

It might also be useful to include the package hyperref, which will automatically make all your
references clickable such that they immediately take the reader to the referenced item. It also
includes the command \autoref{<name>} which will automatically put the relevant word (‘section’,
‘figure’, ‘table’, etc) in front and make the entire thing clickable instead of just the number.

10

3 Mathematics
To do proper mathematics in LATEX you’ll need to work inside a mathematics environment. This
will make your maths look like x+ y = 10 instead of x + y = 10. Most mathematics commands
only work inside such an environment, and non-maths commands will only work outside such an
environment.

3.1 Environments
There are multiple ways to initiate a mathematics environment:

Command Description

$x^2 = 4$ Single dollar sign is for inline mathematics like x2 = 4.

$$E = mc^2$$

Double dollar signs denote a single line of centered maths
like this:

E = mc2

You can continue your text afterwards.

\begin{equation}

a^2 + b^2 = c^2

\end{equation}

The equation block is for (multiple) centered equations:

a2 + b2 = c2 (2)

With an unnumbered version equation*.

\begin{align}

y &= x \cdot \sqrt{x^2} \\

&= x^2

\end{align}

This requires the amsmath package

The align block is for multiple lines of maths aligned.
The & denotes the place where the equations will be
aligned.

y = x ·
√
x2 (3)

= x2 (4)

With an unnumbered version align*.

\begin{align*}

x &= 5-5 & y &= 10-4 \\

&= 0 & &= 6

\end{align*}

This requires the amsmath package

The align block also allows for multiple columns:

x = 5− 5 y = 10− 4
= 0 = 6

The first & denotes the first point of alignment, the second
denotes the space between both columns and the third
denotes the second point of alignment.

3.2 Symbols
Most symbols in LATEX are quite predictable, but are only available as command. Do not paste
your symbols in from Word directly, that doesn’t work. This is a basic list of symbols:

11

Symb. Command Symb. Command Symb. Command

Operations and relations

+ + − - ± \pm

· \cdot × \times = =

≤ \leq ≥ \geq 6= \neq

� \ll � \gg ' \simeq

≈ \aprrox ≡ \equiv ∝ \propto

Set theory & Logic symbols

∃ \exists ∀ \forall ¬ \neg

⊂ \subset ⊆ \subseteq ∧ \land

∈ \in /∈ \notin ∨ \lor

∩ \cap ∪ \cup ⊥ \bot

∅ \emptyset

Arrows

→ \to ← \gets 7→ \mapsto

→ \rightarrow ← \leftarrow ↔ \leftrightarrow

=⇒ \Rightarrow ⇐= \Leftarrow ⇐⇒ \Leftrightarrow

↑ \uparrow ↓ \downarrow ←− \longleftarrow

⇑ \Uparrow ⇓ \Downarrow −→ \longrightarrow

Greek letters

α \alpha β \beta γ \gamma

Γ \Gamma δ \delta ∆ \Delta

ε \epsilon ε \varepsilon ζ \zeta

θ \theta κ \kappa λ \lambda

µ \mu ξ \xi π \pi

ρ \rho % \varrho Σ \Sigma

σ \sigma τ \tau Φ \Phi

φ \phi ϕ \varphi χ \chi

Ψ \Psi ψ \psi Ω \Omega

ω \omega

Others

∞ \infty ~ \hbar ∇ \nabla

12

3.3 Functions and other operations
Besides using some basic symbols it is often necessary to write integrals, powers, subscripts, etc.
This is a list of various mathematical constructs:

Command Result Command Result

\frac{a}{b}
a

b
a/b a/b

x^2 x2 x^{2n} x2n

x_n xn x_{n+1} xn+1

\sqrt{x}
√
x \sqrt[4]{x} 4

√
x

\int_0^x

∫ x

0
\iint

∫∫
*

\iiint

∫∫∫
* \oint

∮
\sum_{i=0}^n x_i

n∑
i=0

xi
\prod_{i=0}^n f(i)

n∏
i=0

f(i)

\sin \theta sin θ \sin^2 \theta sin2 θ

\cos \theta cos θ \tan \theta tan θ
\ln x ln x \log_{10} x log10 x

\lim_{x\to0} x = 0 lim
x→0

x = 0

* This requires the amsmath package

3.4 Brackets
By default, brackets in LATEX have one static size and do not correctly scale when you have larger
formulas, such as in this example:

(x
2 + 10
x+ 5)2

To fix this problem and make the brackets scale correctly, put \left and \right before both
brackets, so you get \left(\frac{1}{x}\right)^2. Alternatively, use the package physics and
put \qty(\frac{1}{x}), this saves you from forgetting the \right. Both will render as(

1
x

)2

There are multiple kinds of brackets available, there are normal brackets: () (), square brackets
[] [], curly brackets { } \{\} and triangular brackets 〈 〉 \langle\range. All of these can
be combined with the \left\right from above to create dynamically sized brackets.

13

3.5 Custom alphabets
Some mathematical statements require other symbols than the ones available by default. Examples
are F for the Fourier transform and R for the set of all real numbers. These characters are available
in other alphabets, the following are available:

Alphabet Command Usage

ABCDEFGHIJLKLMN
OPQRSTUVWXYZ \text{...}

Used to add normal text inside your
equations.

ABCDEFGHIJKLMN
OPQRST UVWXYZ \mathcal{...}

Used for CS O for complexity, the
Laplace transform L and the Fourier
transform F .

ABCDEFGHIJKLMN
OPQRSTUVWXYZ \mathbb{...}* Used for special sets, for example R, N

and C.

* This requires the amssymb package

3.6 Accents
Especially in physics, at some point or another you’ll need to write vectors or other accents on
your symbols. Luckily LATEX, again, has a lot of flexibility and offers many accents. Again a table:

Symb. Command Symb. Command Symb. Command

~a \vec{a} â \hat{a} ā \bar{a}

ã \tilde{a} ȧ \dot{a} ä \ddot{a}

...
a \dddot{a}

....
a \ddddot{a}

There is one problem with the vector sign however, it doesn’t scale when you have longer things.
For example, in geometrics you might need the vector OP , but with your native LATEX vector
you’ll get ~OP . To solve this problem, add the following code to your preamble (the part before
\begin{document}). This requires the tikz package. Note that when using the external library
for tikz (see section 6.7.2 for more information), you should uncomment line 21 (which starts with
a %).

Better vectors
1 % Better vectors in latex

2 \makeatletter

3 \newlength\xvec@height%

4 \newlength\xvec@depth%

5 \newlength\xvec@width%

6 \newcommand{\xvec}[2][]{%

7 \ifmmode%

8 \settoheight{\xvec@height}{$#2$}%

9 \settodepth{\xvec@depth}{$#2$}%

10 \settowidth{\xvec@width}{$#2$}%

11 \else%

12 \settoheight{\xvec@height}{#2}%

13 \settodepth{\xvec@depth}{#2}%

14 \settowidth{\xvec@width}{#2}%

15 \fi%

16 \def\xvec@arg{#1}%

17 \def\xvec@dd{:}%

14

18 \def\xvec@d{.}%

19 \raisebox{.2ex}{\raisebox{\xvec@height}{\rlap{%

20 \kern.05em% (Because left edge of drawing is at .05em)

21 % \tikzset{external/export=false}% (Uncomment when using tikzexternal package)

22 \begin{tikzpicture}[scale=1]

23 \pgfsetroundcap

24 \draw (.05em,0)--(\xvec@width-.05em,0);

25 \draw (\xvec@width-.05em,0)--(\xvec@width-.15em, .075em);

26 \draw (\xvec@width-.05em,0)--(\xvec@width-.15em,-.075em);

27 \ifx\xvec@arg\xvec@d%

28 \fill(\xvec@width*.45,.5ex) circle (.5pt);%

29 \else\ifx\xvec@arg\xvec@dd%

30 \fill(\xvec@width*.30,.5ex) circle (.5pt);%

31 \fill(\xvec@width*.65,.5ex) circle (.5pt);%

32 \fi\fi%

33 \end{tikzpicture}%

34 }}}%

35 #2%

36 }

37 \makeatother

38
39 % --- Override \vec with an invocation of \xvec.

40 \let\stdvec\vec

41 \renewcommand{\vec}[1]{\xvec[]{#1}}

42 % --- Define \dvec and \ddvec for dotted and double-dotted vectors.

43 \newcommand{\dvec}[1]{\xvec[.]{#1}}

44 \newcommand{\ddvec}[1]{\xvec[:]{#1}}

3.7 The physics package
The physics package adds a lot of shorthand notation for various often-used mathematical
expressions, primarily focused on physics. As mentioned before, it introduces the \qty(..)

notation, which replaces both \left and \right in one command. For more information, see
section 3.4. Besides that one, the following commands are available:

Command Result Command Result

\abs{x} |x| \comm{A}{B} [A,B]
A \cross B A×B \grad{A} ∇A

\div{A} ∇ ·A \curl{A} ∇ ×A

\sin[2](x) sin2(x) \Re{z} + \Im{z} Re{z}+Im{z}
\dd{x} dx \dd[3]{x} d3x

\dv{x}
d

dx
\dv{f}{x}

df
dx

\dv[2]{f}{x}
d2f

dx2
\pdv{x}

∂

∂x

\pdv{f}{x}
∂f

∂x
\pdv[2]{f}{x}

∂2f

∂x2

\pdv{f}{x}{y}
∂2f

∂x∂y
\pdv*{f}{x} ∂f/∂x

15

\bra{a} 〈a| \ket{b} |b〉
\braket{a}{b} 〈a|b〉 \expval{a} 〈a〉

\expval{\frac{1}{x}}{a} 〈a| 1
x
|a〉 \expval**{\frac{1}{x}}{a}

〈
a

∣∣∣∣ 1
x

∣∣∣∣a〉

3.8 The siunitx package
Another very useful package for physicists is siunitx for formatting numbers and their
units. I would advise using the package with the following settings, put this command after
\usepackage{siunitx}.

\sisetup{separate-uncertainty=true, exponent-product=\cdot}

The package provides the following commands:

Command Result

\num{1.234} 1.234
\num{4.23e-4} 4.23 · 10−4

\num{4.3 \pm .2 e-2} (4.3± 0.2) · 10−2

\num{4.3 e-2 \pm 2 e-3} Will give an error!
\si{\kilo\meter\per\second} km s−1

\si{\kilogram\cubed\per\square\hertz} kg3 Hz−2

\SI{4.543\pm.003e-8}{\kilogram\per\meter\tothe{5}} (4.543± 0.003) · 10−8 kg2 s m−5

Also, a new column type for tables (see section 4.1) is provided, S. This will call \num{...} on
each cell in that column, and will automatically align all data on the decimal separator (.). Note
that in order to use normal text in that column, you should put it in between {...}.

In the \si{} and \SI{}{}-commands, you have to enter your units. For a full list of units, please
refer to the package documentation, but using the autocomplete features in most editors you’ll be
able to find them as well. In short: all SI units and many derived units are available, from common
ones such as \meter, \second and \kilogram (\gram does not exist!) to uncommon ones such as
\angstrom and \knot.

16

4 Tables & Matrices
Tables are a complex matter in LATEX. I will not treat all details here, but just the basics
to get started. A table is, once again, a separate environment, which can be started using
\begin{tabular}{<conf>} and \begin{array}\end{array}{<conf>}, among others. In here,
the conf is the configuration of the columns, as explained below. The difference between both
environments given is that array only works inside a maths environment and is therefore well-suited
for e.g. matrices.

Note on table environment

The tabular environment is different from the table environment! The latter is a
floating environment similar to figure, and will place your table anywhere on the page,
which might be useful if you want to use it just like a figure with a number. This is not
mandatory to use!

4.1 Columns
Columns of tables are defined in the conf part of the environment opening. In there you define the
layout of your table. Each character you put in is part of that specification. For example, an l is a
left-aligned column, a c is centered and r is right-aligned. Other options include p<width> which
is a column with a fixed width, and the array package (not to be confused with the environment!)
also defines m<width> and b<width> that are the same as p but then vertically centered and aligned
at the bottom. Furthermore, | defines a single vertical line in between columns, || is a double line.

Note on professional tables

It is important to remember that professional tables in scientific articles and books
almost never feature vertical lines. It is considered bad practice and cluttering to use
them, because a good table layout should not require vertical lines. See section 4.2 for
instructions on how to add proper horizontal lines to your table.

As an example, we get:

\begin{tabular}{r|c||lm{.3\linewidth}|}

right & center & left & short \\

r & c & l & short

\end{tabular}

right center left short
r c l short

Note that content in the paragraph-columns p, m and b will automatically be wrapped to be
contained in the cell itself, other column types will simply put everything on one line:

\begin{tabular}{m{.4\linewidth}|l}

Very long text that does not fit

on one line so it will have

to wrap & Very long text that

does not fit on one line so

it will have to wrap

↪→

↪→

↪→

↪→

\end{tabular}

Very long text that
does not fit on one
line so it will have
to wrap

Very long text that does not fit on one line so it will have to wrap

17

The very useful package siunitx defines another useful column type: S. This will treat all content
as the argument to a \num{..} call (see section 3.8 for more information) and will align the numbers
at the decimal point. Note that in this column, all content that is not a number (e.g. column title)
should be put in between {}.

\begin{tabular}{S}

{\bf Values} \\

2.3456 \\

-54.23 \\

1.2e3

\end{tabular}

Values
2.3456

−54.23
1.2 · 103

4.2 Rows and lines
Inside a table, you put your content. As could already be seen in the example above, your separate
separate columns with the & symbol and go to a new row with the \\. If you want multiple lines
inside a cell, you therefore cannot use \\, but you’ll have to use \newline. Note that this only
works within columns of type m, p or b.

Horizontal lines can be added using \hline and \cline{<i>-<j>} where the first is a table-spanning
line and the latter starts at column i and ends at columns j. However, using these you’ll see
that the table can become quite cramped, there will be little space left between the lines and the
contents of the table:

\begin{tabular}{p{.6\linewidth}}

\hline

Example text \\\hline

Text with some \newline newlines

and such and also some line

breaking \\\hline

↪→

↪→

\end{tabular}

Example text
Text with some
newlines and such and also
some line breaking

Of course, this is not desirable. To solve this, use the package booktabs. This package provides four
useful commands inside your tables: \toprule, \midrule, \bottomrule and \cmidrule{<i>-<j>}

where the first three are alternatives to \hline and the last one is comparable to \cline{<i>-<j>}.
The advantage of these commands is that they provide nice spacing around the lines and make
your table look a lot better.

\begin{tabular}{p{.4\linewidth}r}

\toprule

\bf Item & \bf Cost \\

\midrule

Pear & 500 \\

Apple & 300 \\

\cmidrule{2-2}

& 800 \\

\bottomrule

\end{tabular}

Item Cost
Pear 500
Apple 300

800

18

4.3 Spanning
Spanning is when one cell has the width of e.g. two columns. You can have cells spanning multiple
columns, multiple rows, or both at the same time. Cells spanning multiple columns is integrated in
LATEX by default and is available using the \multicolumn{<num>}{<pos>}{<contents>}. In here,
num is the number of columns spanned, pos is the formatting of the cell (using the same specifiers
as for columns, l, c, r, etc.) and contents is the content of that cell. This is often used in headers
of tables.

Cells spanning multiple rows is also possible, using the package multirow. It provides a command
\multirow{<num>}{<width>}{<contents>} which is identical in arguments to its column counter-
part, except for width which requires a width or * to just take over the width of over cells in that
column. The call of this function should happen in the top row of the ones to be spanned, in the
other rows this column can be left empty. As an example:

\begin{tabular}{llr}

\toprule

\multicolumn{2}{c}{\bf Product} & \\

\cmidrule{1-2}

\bf Category & \bf Item & \bf Cost \\

\midrule

\multirow{2}{*}{Fruit} & Pear & 50 \\

& Apple & 30 \\

\cmidrule{1-2}

\multicolumn{2}{c}{\multirow{2}{*}{Others}} & 50 \\

& & 100 \\

\bottomrule

\end{tabular}

Product
Category Item Cost

Fruit Pear 50
Apple 30

Others 50
100

4.4 Matrices
Matrices are often much easier and require much less styling than normal tables. To have the
most control over your matrices, simply use an array environment within your mathematical
environment. You’ll have to put in the brackets yourself, using \left\right. However, in the
amsmath package, there are also some useful predefined environments available to simplify this
process.

The base matrix environment available in amsmath is matrix. This is very similar to a tabular or
array, except that it doesn’t require column specifications. You just enter your content separated
by an & and newlines \\. There are some other environments available that add brackets as well:

Environment Brackets

pmatrix Normal: ()
bmatrix Square: []
Bmatrix Curly: { }
vmatrix Lines: | |
Vmatrix Double lines: ‖ ‖

As an example matrix, we have:

19

X =

\begin{pmatrix}

1 & 2 & 3 & \cdots & 104 \\

3 & 4 & 5 & \cdots & 106 \\

\vdots & \vdots & \vdots & \ddots & \vdots

\\↪→

43 & 44 & 45 & \cdots & 146

\end{pmatrix}

X =


1 2 3 · · · 104
3 4 5 · · · 106
...

...
...

. . .
...

43 44 45 · · · 146



20

5 Figures
In LATEX, with figures we mean objects (e.g. graphs, pictures) with a caption and a number, that
can be referenced to in the text. How to reference was already explained in section 2.6. Here I will
discuss how to add figures, position them and put some content in them.

5.1 Floating environments
All figures in LATEX are so-called floating environments. They are blocks of content that can move
through the document independently of the text. The two most important floating environments
are figure and table, the first for content such as pictures and graphs, the latter for tables. By
default, such a floating environment will be placed on seemingly random position in the document.
This position is chosen by the compiler and is often either the top or bottom of a page, in such a
way that the flow of the rest of the text will not be affected too much. Floating blocks will also
always be put together on one page.

By default, this works relatively well. However, at times when you have many figures this can
cause some strange lay-out and you might want to take some control in your own hands. This can
be done with the placement modifiers you can specify for your floating environment. The available
modifiers are:

h Place the float approximately here

t Place the float at the top of the page

b Place the float at the bottom of the page

p Place the float at a special page for floats only

! Overrides default LATEX behaviour

H Place the float at precisely this location, requires the float package

It can sometimes be difficult to correctly place your figures, and with multiple figures it is often a
process of trial-and-error.

\begin{figure}[t]

\centering

\includegraphics[width=.9\linewidth]{bird.jpg}

\caption{A bird}

\label{fig:bird}

\end{figure}

Figure 1: A bird

21

5.2 Wrapping text

Figure 2: A wrapped bird

By default, figures in LATEX are placed between two lines of text,
they take up the entire width of the page. However, sometimes it
might be useful to have your text wrap around the figure on the
side, especially when you have smaller tables or pictures. For this,
use the package wrapfig. To initiate a wrapped environment, use
\begin{wrapfigure}[<lines>]{<pos>}{<width>} where lines is
the number of lines you want the figure to span (optional), pos is
the position of the figure (either r right or l left) and width is, of
course, the width of the figure.

Example wrapped figure

1 \begin{wrapfigure}{r}{0.3\textwidth}

2 \begin{center}

3 \includegraphics[width=.9\linewidth]{wrapbird.jpg}

4 \end{center}

5 \caption{A wrapped bird}

6 \label{fig:wrapbird}

7 \end{wrapfigure}

The placement of wrapped figures can be more difficult than normal figures. It can be the case
that there is a lot of whitespace at the top or bottom of the wrapped figure, which causes text to
look weird. This can be solved by inserting several \vspace{<length>} commands in your figure
with negative lengths. As for normal figures, a lot of trial-and-error is involved.

5.3 Captions
As you have already seen in the figures before, a figures and tables can be given a caption using
\caption{<text>}. This command will automatically recognize the current environment (e.g.
figure and table), and will automatically but the correct text and number in place for you. Each
different type of caption uses a separate counter.

By default, the caption system can be somewhat limiting. You might want to give captions to
figures/images outside a figure environment or style the appearance of your captions. This can
be done using the caption package, which provides the command \captionof{<type>}{<text>}

to insert a caption of the given type. This can be for example table and figure.

The caption package also enables you to customize the styling of your captions. This can be set
in the options of the package, or using \captionsetup{<options>}. The package provides many
options, such as width, font, labelfont and textfont. The option position is also interesting,
since it specifies where the caption is with respect to the figure/table. This allows the package to
correctly set the whitespace.

\captionsetup{labelfont=bf,

font=small, width=.8\linewidth}↪→

\captionof{figure}{This is a smaller

caption that is limited in width

and automatically overflows}

↪→

↪→

You can see the difference when

putting normal, long text next to

it and comparing the width.

↪→

↪→

Figure 3: This is a smaller caption that
is limited in width and automatically
overflows

You can see the difference when putting normal,
long text next to it and comparing the width.

22

5.4 Subfigures
Sometimes, it is desirable to have multiple items in one figure, such that you have figures 1a, 1b, etc.
For this, the package subcaption can be used. This package provides the subfigure and subtable

environments that can be nested within an existing figure and table. Using \caption{<text>}

you can then give titles to them. As an example:

Subfigures example

1 \begin{figure}[!h]

2 \centering

3 \begin{subfigure}[t]{0.3155\textwidth}

4 \includegraphics[width=\linewidth]{leftkitten.jpg}

5 \caption{Left kitten}

6 \end{subfigure}

7 \begin{subfigure}[t]{0.3741\textwidth}

8 \includegraphics[width=\linewidth]{middlekitten.jpg}

9 \caption{Middle kitten}

10 \end{subfigure}

11 \begin{subfigure}[t]{0.2104\textwidth}

12 \includegraphics[width=\linewidth]{rightkitten.jpg}

13 \caption{Right kitten}

14 \end{subfigure}

15 \caption{Some kittens}

16 \end{figure}

(a) Left kitten (b) Middle kitten (c) Right kitten

Figure 4: Some kittens

You see that this works nicely, but the widths of the subfigure are set to specific values as to
make the pictures align. This is usually not a major problem, but in this case it would be nice if
the pictures align properly. To do this automatically, there is some extra code necessary. I won’t
explain it, but the example is below.

As an alternative to this, the floatrow package can also be used. This package is more flexible
and allows to do this with any content, not just figures from a file. For instructions on how to
make this alignment work, see the documentation, paragraph 11.1.7.

23

http://ctan.triasinformatica.nl/macros/latex/contrib/floatrow/floatrow.pdf

Subfigures with automatic sizing

1 \begin{figure}[!h]

2 \centering

3 \newsavebox{\rowbox}

4 \sbox\rowbox{\resizebox{.9\textwidth}{!}{

5 \includegraphics[height=10cm]{leftkitten.jpg}

6 \includegraphics[height=10cm]{middlekitten.jpg}

7 \includegraphics[height=10cm]{rightkitten.jpg}

8 }}

9 \newlength{\rowheight}

10 \setlength{\rowheight}{\ht\rowbox}\hspace*{\fill}

11 \subcaptionbox{Left kitten}{\includegraphics[height=\rowheight]{leftkitten.jpg}}\hfill

12 \subcaptionbox{Middle kitten}{\includegraphics[height=\rowheight]{middlekitten.jpg}}\hfill

13 \subcaptionbox{Right kitten}{\includegraphics[height=\rowheight]{rightkitten.jpg}}\hspace*{\fill}

14 \caption{Some kittens}

15 \end{figure}

(a) Left kitten (b) Middle kitten (c) Right kitten

Figure 5: Some kittens

5.5 Including pictures
By default, it is not possible to include external pictures in your LATEX document. The package
graphicx enables this using the command \includegraphics[<options>]{<filename>}. Here,
in options you generally put the desired width or height of the picture, and in file you put the
filename of the picture without spaces. Spaces in filenames tend to break LATEX.

The file types supported differ for each compiler, but the most commonly used ones (PdfLaTeX,
LuaLaTeX) support jpg, png and pdf. The package epstopdf also enable you to include eps files.
For example usage, see the figures above.

5.6 Float barriers
When including many figures in your document, they might get spread further and further down
the document and might even ‘pollute’ next chapters or sections. A built-in way to solve this is
using \clearpage, a command that puts all floats that do not yet have a position at this place,
then goes on to the next page with the rest of the content. This way, several figures might end up
at the pages before this command was called.

In some even more specific cases, it might not be desirable to insert a new page to clear all your
floats. For example: that was the case with the last subfigure example, it kept drifting off into this
section, something I did not want. I also did not want to include a page break here. The solution
for this situation is provided by the package placeins with \FloatBarrier that enables you to
place all ‘pending’ floats at the current spot and then continue with the rest of the document
directly.

24

6 Graphs
In many scientific reports and articles, graphs are an integral part. There are multiple ways to
make graphs and include them in your document. Often, graphs are generated using some external
tool (Excel, Matlab, Mathematica), exported as JPG/PNG/PDF and then included as pictures in
the document. This is a perfectly fine method, with one major disadvantage: they don’t look in
place. They generally don’t share the LATEX fonts, its colors, etc. (The one exception to this is
DataGraph (OSX only, paid) that generates stunning graphs that look just like native LATEX ones)

An alternative to using an external tool is to use some graphing library inside LATEX. The one I use
the most is called pgfplots which heavily relies on tikz to make a range of graphs. In this chapter,
I will be explaining the basics of this package. The possibilities are almost endless, as is clear from
the enormous examples page. For more details on the options, refer to the 566 page documentation.

6.1 Basics
All fun is happening inside the axis environment, which lives inside a tikzpicture environment.
Therefore, the basic syntax is:

\begin{tikzpicture}

\begin{axis}[options]

% Add plots

\end{axis}

\end{tikzpicture}

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Here, options is the place for many options of your graph. These options include things like title,
axis labels, grid settings and size.

Name Description

title The title of the graph

xlabel
The title of the x-axis (also for y, z). This is evaluated inside a maths
environment, so use \text{...} to get normal text

width The width of the graph
height The height of the graph
grid Whether you want a grid on the background: major, minor, none, both
minor x tick num (also for y, z) Number of ticks in the minor grid per step in major grid
xmin, xmax (also for y, z) The range of x-values to plot

axis x line
(also for y, z) Where the axis should show. Default both sides of the
plot, options include left, right, top, bottom, middle

xmode
(also for y, z) Whether the axis should be logarithmic or linear (default
linear)

25

http://pgfplots.sourceforge.net/gallery.html
http://ctan.cs.uu.nl/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf

6.2 Function plots
The easiest plots to do are function plots, so things like plotting x2, sin(x) or even more complicated
things like θ →

(
cos

(3
2θ

)
cos θ, cos

(3
2θ

)
sin θ

)
and z = (x+ 2)2 + 4y2.

−2 −1 0 1 2

1

2

3

4

2 4 6

−1

−0.5

0

0.5

1

0.5 1

−1

−0.5

−4
−2 0 −1

0

1

0

5

Figure 6: Some example plots that are possible with pgfplots

As you can already see, it is possible to plot both 2D- and 3D-functions. Also, both explicit
(y = f(x)) and parametrized functions (t → (x(t), y(t))) are supported. Unfortunately, implicit
functions like the unit circle (x2 + y2 = 1) are not supported and need to be either parametrized
or plotted in multiple parts (one part of each x± = ±

√
1− y2 in this case). However, within those

conditions, the library is quite flexible and can plot almost anything.

6.2.1 2D plots

To plot a 2D-function, we use the command \addplot [<options>] {<function>}; (note the
semicolon!). In the options it is possible to define the color of the line, define some domain to be
plotted or (useful for parametrized functions) set how many samples should be taken within your
plotted domain. Within the curly brackets {} the function should be specified in terms of x. This
gives the following code for our y = x2 + x− 4.

\begin{tikzpicture}

\begin{axis}[axis y line=middle,

axis x line=middle]↪→

\addplot[domain=-2:2, red]

{x^2+x-4};↪→

\end{axis}

\end{tikzpicture}

−2 −1 1 2

−4

−2

2

For parametrized functions, replace the function inside the curly brackets with two sets of them
wrapped inside normal brackets as follows: ({a(x)},{b(x)}). The first function describes x, the
other y. Both functions should be defined in terms of x (confusing, I know). It is recommended to
define the number of samples that should be taken, to avoid sharp edges. As an example, for the
famous Lissajous curve:

\begin{axis}

\addplot[domain=0:2*pi, blue,

samples=400]↪→

({cos(3*deg(x))},

{sin(2*deg(x))});↪→

\end{axis}

−1 −0.5 0 0.5 1
−1

0

1

26

Note that all trigonometric functions in pgfplots are based on degrees and not radians, so in order
to use them with radians, the input should be converted to degrees using deg(x), as done in the
example above.
It is also possible to work with a polar coordinate system, which might be more useful for some
functions. For this, the pgfplots library polar should be included and all code should be in the
polaraxis environment. Besides that, the function specified in \addplot; should give the radius
(r(θ)) instead of y. For a more advanced example, with a butterfly curve, we get:

% In your preamble

\usepackage{pgfplots}

\usepgfplotslibrary{polar}

% ...

% In your document somewhere

\begin{tikzpicture}

\begin{polaraxis}

\addplot[red, domain=0:7200,

samples=5000] {...};↪→

\end{polaraxis}

\end{tikzpicture}

0

30

60
90

120

150

180

210

240
270

300

330

0 2 4

6.2.2 3D plots

It is also possible to generate 3D plots in pgfplots. However, this will get you into trouble for
more complex graphs. Plotting more than 1 function will get you into trouble, and also more
advanced functions might give problems with the memory limit or something else. For the simpler
functions pgfplots is fine, but for more complex ones, it might be best to use an external tool.
The syntax of 3D plots is quite similar to 2D plots, except that the function to call is now called
\addplot3 [<options>] {<function>}; where the 3 indicates that this is a 3D function. The
options are again quite similar, with now an added y domain for the second variable. The function
to be specified between the {} is now a function of z = f(x, y), or again parametrized with
t→ (x(t), y(t), z(t)) (so you have to specify 3 variables!).
The axis environment also has some extra options that are useful for 3D plots. With view={a}{b}

it is possible to define the angle from which you view the graph and with 3d box=complete it is
possible to get lines on all edges of the ‘box’ that is plotted. In the addplot3 command, options
have been added for the domain of y (y domain) and the number of samples of y (samples y). For
3D surfaces there are multiple plot types, mesh is for contours only (like a net), surf is to fill the
surface completely (and show contour lines).
It is also possible to color your surface, to make it clearer what its z-value is. This can be done
using color maps, that have to be set in the options of your plot command. The syntax for this is
[colormap/name, <options>] where name is the name of the color map you want to use. Some
of the predefined color maps are: hot, jet, blackwhite, cool and bluered.
As an example, below the parametrized function (t, u)→

(
2+2 tanh2(1

2 t
)
·cos(u); 2+2 tanh2(1

2 t
)
·

sin(u); t) is plotted, with a color map and 40 samples in both variables. Note that the option
z buffer=sort is defined, this is to make sure that the elements in the back don’t overlap the
elements in the front.

27

\begin{axis}[colormap/cool, view={30}{20}]

\addplot3[surf, z buffer=sort, samples=40,

samples y=40, domain=-3:3, y

domain=0:2*pi]

↪→

↪→

(

{(2 + 2 * tanh(.5*x)^2)

* cos(deg(y))},

{(2 + 2 * tanh(.5*x)^2)

* sin(deg(y))},

{x}

);

\end{axis} −2 0 2 −2
0

2

−2

0

2

6.3 Data plots
A very important and often-used plot is of course a plot of measurement data. Various types of
plots are available, such as scatter plots, bar plots, stacked plots, filled plots (area under the line
is colored), boxplots and many more. In this document, only scatter plots will be discussed. For
the other types of plots, refer to the documentation of pgfplots. All other types of plots are very
similar to scatter plots and require only one or two options to be set.
In this part we will focus on getting your measurement data in your graph. There are two main
ways of plotting your data points. The first is by defining them all in the tikzpicture code as
coordinates. The other is by using a separate data file. The latter is the easiest if you export your
data from another program such as Matlab or Mathematica, and the only option if you want to fit
a function through the data later on.

6.3.1 Simple coordinates

To plot simple coordinates you can use \addplot [<options>] coordinates {<coords>}; where
again options is for your options and in this case you put a list of coordinates inside the curly
brackets coords. It is also possible to specify error bars for your data points, see the example
below. More information on error bars can be found in section 6.4. A useful option for these plots
is only marks that hides the line that (by default) connects the data points. A basic example
showcasing the possibilities:

\begin{axis}[minor y tick num=1]

\addplot[red, only marks,

error bars/.cd,

x dir=both, x explicit,

y dir=both, y explicit

] coordinates {

(1,1) +- (0.1, 0.3)

(2,1.8) +- (0.4, 0.2)

(3.2,3.8) += (0.2, 0.8)

-= (0.5, 0.2)↪→

(4.8,5.2) +- (1, 0.3)

};

\end{axis}

1 2 3 4 5 6

2

4

28

6.3.2 External source

The basic coordinates method demonstrated above is easy to start with, but with larger data sets
it becomes cumbersome to have all data in your latex code all the time. Also it might require a lot
of manual labour to convert all your data to the correct format, especially if the data is extracted
from another program such as Matlab or Mathematica. The solution for this is to save your data
in any external file, which should be formatted as simple text with columns separated by white
space (at least one tab or space) and rows separated by newlines. Other options are possible using
the pgfplotstable.

Note on including your data in your LATEX file

Sometimes it might be inconvenient to use separate files for your measurement data and if
you’re like me you’d like to keep all the data in one file. Even when using external files as
a data source for your graphs, it is still possible to define your data inside latex. Simply
include the package filecontents and put your data inside the filecontents envi-
ronment using \begin{filecontents}{<filename>} data \end{filecontents}. The
contents of the environment will then be stored in the file with your filename.

To use an external file as data source for your graph, put table in your \addplot; command:
\addplot [<options>] table [<data specification>] {<filename>};. Inside, there is the
usual options part for the usual options. New is the data specification, here you define what
column is the data for what axis. The filename is quite straightforward, but keep in mind that
file names in LATEX cannot have spaces in them! This might work in some places but usually
yields very unpredictable behaviour.
In this case, an example is again the easiest way to show how this works:

% Data format:

% X Y X_err Y_err

% 1 1 0.1 0.3

% ...

\begin{axis}[

minor y tick num=3,

minor x tick num=3,

grid=both

]

\addplot[red, only marks,

error bars/.cd,

x dir=both, x explicit,

y dir=both, y explicit

] table [

x=X, y=Y,

x error=X_err, y error=Y_err

] {<filename>};

\end{axis}

1 2 3 4 5 6

2

4

6.4 Error bars
Another useful and important feature in pgfplots is the ability to show error bars. The error bars
are quite flexible, it is possible to define absolute and relative values, but also expressions/functions
such as

√
x. Furthermore, it is possible to define separate error values for both the positive and

negative directions (so-called asymmetric errors). To enable error bars on any (data) plot, include
the option error bars/.cd in the addplot command. Include this as the last option, all other
options you define after this will be about the errors.
First, you have to define what directions you want your error bars to appear in. For this, use x

dir (or y or z) and specify what type of bars you want. The options are none (no error bars),

29

plus (only in the positive direction), minus (only in the negative direction) and both (error bars in
both directions). The actual value has to be specified separately. In case of both it is also possible
to specify different values for the positive and negative direction.
The easiest way to add error bars to your measurements is to include them in your data set, as
done in section 6.3. Then in your options, define that the error is given explicitly, by adding x

explicit (or y, z). It is also possible to make the error constant for all your measurement values,
then add the options x fixed = value where you replace value by the error value. For both cases
there is also the alternative x explicit relative (and x fixed relative) that states that the
given value is a relative error (a factor, 1 = 100%).
For the table plot type it is also possible to specify separate positive and negative errors, put
this information in separate columns and include them in the options using x error plus and x

error minus and omit the default x error. More advanced is the ability to make each of these
possible errors a mathematical expression rather than a value. This is done using x error expr

(similar for other axes). The expression given can make use of the data of other columns in the
same row using \thisrow{<column>}.
The example below showcases all functionality. The absolute error in positive x direction is given
in the data file, the absolute error in negative x direction is given by the expression x̄ = sin2(100x)
(remember that sin works in degrees), the relative error in both directions for y is 30%.

\begin{axis}

\addplot[red, only marks,

error bars=./cd,

x dir=both, x explicit,

y dir=both, y fixed relative=.3

] table [

x=X, y=Y,

x error plus=X_err+,

x error minus

expr={sin(\thisrow{X}*100)^2}↪→

] {<filename>};

\end{axis} 0 1 2 3 4 5 6

2

4

6

6.5 Fitting a function
When you have plotted your data, the next logical thing to do is to fit some function through your
data. Often, you’ll have some simple linear relationship y = ax+ b where you want to determine
your a and b. In other cases you might want to fit more complex functions such as y = a sin(bx+ c)
through your data. Luckily, both are possible, but unfortunately not with pgfplots only. To
properly fit a function, we need the help of the external tool gnuplot.

6.5.1 Setting up gnuplot

When working online in either Overleaf or ShareLatex, everything is already set up correctly and
you can start working with gnuplot directly, so you can skip this part. When working offline, first
install gnuplot from the download site. Make sure to add gnuplot to your PATH (option in the
setup). After that, your LATEX program needs to be set up correctly: the parameter --shell-

escape needs to be added to the compile command. For some programs I added instructions below,
for your specific program please search online.

TeXstudio To modify the compile command, go to Options -> Configure TeXstudio -> Com-
mands. Then add -shell-escape just after the part with -synctex=1 in the top 4 entries (LaTeX,
PdfLaTeX, XeLaTeX and LuaLaTeX).

30

http://www.gnuplot.info/download.html

TeXpad TeXpad has functionality built-in that automatically enables this option. If, for some
reason, this doesn’t work, you can manually enable it by switching the option ‘Shell Escape’ in the
typeset configuration (click on the arrow next to ‘Typeset’ in the toolbar, choose ‘Manual’ instead
of ‘Auto-sense’).

6.5.2 Calling gnuplot

gnuplot is a powerful plotting tool that can plot many different types of graphs. The program
is script-based, so you need to put in a script to get out your graphs. It can be called using
the command \addplot [raw gnuplot, <options>] gnuplot {<code>}; where again, options
are the usual options for the plot and code is the code to be executed. I will not discuss the
full functionality of gnuplot here, since that is beyond the scope of this document. For more
information, refer to the documentation. As a quick example:

\begin{axis}

\addplot[raw gnuplot, red] gnuplot {

f(x) = a*x^2;

a = 2;

plot [x=-2:2] f(x);

};

\end{axis}
−2 −1 0 1 2

0

2

4

6

8

6.5.3 Making a fit

To do a fit through some test data, it is easiest to have your data in an external file, as outlined in
section 6.3.2. Below, I will provide an example with the basic script to do a linear fit on some data.
It is easy to adapt this to your situation, by changing f(x), adding more variables, or changing
the indexes of your columns.

\addplot[red, only marks, mark=x] table [x=X, y=Y]

{<filename>};↪→

\addplot[raw gnuplot, red] gnuplot {

Function to fit

f(x) = a*x + b;

Initial guesses for all variables

a = 1; b = 1;

Fit command.

fit f(x) '<filename>' using 1:2 via a,b;

Plot the function for the given domain

plot [x=0:6] f(x);

};

0 2 4 60

2

4

6

The fit command is used to calculate the best fit for the variables through the data and has the
following syntax: fit <function> <filename> using <x>:<y> via <vars>; where function is
the function to fit, filename is the file with the data, x and y are the indices of the columns for X
and Y (starting at 1) and vars are the variables in the function that have to be fitted. A more
complex example, based on a real experiment I did some time ago:

31

\addplot[red, mark=x, only marks] table [x=X, y=Y]

{<filename>};↪→

\addplot[raw gnuplot, red, mark=none] gnuplot {

f(x) = a*sin(b*x + c) + d;

a = 3000; b=-2; c=100; d=4000;

Marks that sin should work with degrees

set angles degrees;

fit f(x) '<filename>' using 1:2 via a,b,c,d;

plot [x=0:360] f(x);

};

0 100 200 3000

2,000

4,000

6,000

8,000

6.5.4 Incorporating error bars

It is also possible to fit data sets while incorporating errors in the measurement data. These errors
should be stored in separate columns in your data file. The commands for incorporating errors are:
fit <function> <filename> using <x>:<y>:<xerror> xerror via a,b;

fit <function> <filename> using <x>:<y>:<yerror> yerror via a,b;

fit <function> <filename> using <x>:<y>:<xerror>:<yerror> xyerrors via a,b;

for errors in x-direction only, errors in y-direction only and errors in both directions, respectively.
Here <xerror> and <yerror> are the column indices of the columns where the error value is stored.
Each of the column index markers can be replaced with an expression as well. Put this expression
in between normal brackets (). Within such an expression it is possible to refer to the other
columns using $<i> where i is the index of the other column. As an example:

\addplot[

red, only marks, error bars=./cd,

x dir=both, x explicit,

y dir=both, y explicit

] table [

x=X, y=Y,

x error expr={sin(\thisrow{X}*100)^2},

y error=Y_err

] {<filename>};

\addplot[raw gnuplot, red, mark=none] gnuplot {

f(x) = a*x + b;

a = 1; b = 1;

set angles degrees;

fit f(x) '<filename>' using

1:2:(sin($1*100)^2):3 xyerrors via a,b;↪→

plot [x=0:6] f(x);

};

0 2 4 60

2

4

6

6.6 Legend entries
Another important aspect of a graph is its legend, especially if multiple lines or data sets
are plotted. Luckily, generating the legend is relatively easy. Simply put the command
\addlegendentry{<name>} (without semicolon!) after the \addplot;. Note that this will add all
plots in order, so if you do two \addplot;’s and after that an \addlegendentry, the entry added
will be for the first plot. In order to skip a plot, add the option forget plot to the \addplot;

command.
To determine the legend position, use the legend pos option for the axis environment. Possible
values are each diagonal wind direction (north east, south west, etc) that will place the legend

32

in one of these corners of the graph. Only north east can also be combined with outer (i.e. outer
north east), to place the legend outside the graph, next to it.
It is also possible to label your plots using \label{<name>} and refer to them using \ref{<name>},
the reference will then be the line style of the plot you refer to. Note that this does not work when
using the external library, as explained in 6.7.2, you’ll find a workaround there as well. As an
example to combine all options:

\begin{tikzpicture}

\begin{axis}[legend pos=outer north east]

\addplot [red, domain=0:6, forget plot]

{.5*x^2};↪→

\addplot [blue, only marks, mark=x] table

[x=X, y=Y] {<filename>};↪→

\label{plot:data}

\addlegendentry{Data points}

\addplot [raw gnuplot, blue] gnuplot {

% Code for linear fit

};

\label{plot:fit}

\addlegendentry{Best fit}

\end{axis}

\end{tikzpicture}

Here, \ref{plot:data} is the measured data and

\ref{plot:fit} is the best linear fit.↪→

0 2 4 60

5

10

15 Data points
Best fit

Here, is the measured data and is the best
linear fit.

Something extra that might be interesting to do is to include your fit-parameters from gnuplot

into your legend. This way you immediately show the fitted parameters, even including their error!
For this, you’ll have to extend your gnuplot script and do some trickery in the \addlegendentry.
An example:

\addplot[raw gnuplot, red, mark=none] gnuplot {
f(x) = a*x + b;

a = 1; b = 1;

Indicates that we want to know the error in the fit, creates for each fitted variable

another variable with name <>_err where <> is the name of the variable.

set fit errorvariables;

fit f(x) '<filename>' using 1:2:3:4 xyerrors via a,b;

plot [x=0:6] f(x);

Output variables to a file

set print '<other_filename>';

print a, a_err, b, b_err;
};

\addlegendentry{

% Read the data in the specified file and store it in the command \out

\pgfplotstableread{<other_filename>}\out

% Get the elem on row 0 and column 0 of data in \out and store it in \outA

% same for column 1-3 and \outB-D

\pgfplotstablegetelem{0}{0}\of\out \pgfmathsetmacro\outA{\pgfplotsretval}

\pgfplotstablegetelem{0}{1}\of\out \pgfmathsetmacro\outB{\pgfplotsretval}

\pgfplotstablegetelem{0}{2}\of\out \pgfmathsetmacro\outC{\pgfplotsretval}

\pgfplotstablegetelem{0}{3}\of\out \pgfmathsetmacro\outD{\pgfplotsretval}

% Print numbers in \outA-D in the correct place and format

$y = (\pgfmathprintnumber{\outA} \pm \pgfmathprintnumber{\outB}) \cdot x +

(\pgfmathprintnumber{\outC} \pm \pgfmathprintnumber{\outD})$ (best fit)↪→

}

33

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 60

1

2

3

4

5

6
Data points

y = (1.19 ± 0.15) · x + (−0.29 ± 0.34) (best fit)

6.7 Improving performance
This might all work fine with a few figures, but as soon as there are a couple of them, with some of
the more advanced features (fitting, 3D), the compilation time can quickly increase dramatically
and memory usage can become a problem. There are two main ways to deal with this: use
LuaLaTeX, or cache your figures.

6.7.1 Using LuaLaTeX

LuaLaTeX is a new, alternative compiler that has many advantages over the ‘traditional’ compilers
such as PdfLaTeX. The main advantage is that LuaLaTeX dynamically allocates memory so
doesn’t run into memory issues very quickly, and it is a lot quicker and more suitable to compile
these graphics. There are still some minor incompatibilities, but for normal usage you should not
encounter any difficulties. If you have a modern LATEX installation, chances are that you already
have it installed. In your editor, simply pick the right compiler. This works differently for each
editor.

TeXstudio Go to Options -> Configure TeXstudio -> Build. For the item ‘Default Compiler’,
choose txs:///lualatex.

TeXworks In your toolbar in the top left, choose ‘LuaLaTeX’ in the list.

TeXpad Click on the arrow next to ‘Typeset’ in the toolbar, choose on ‘Manual’ and enter
LuaLaTeX at ‘Format’.

Overleaf With your document open, click on the cog in the top-right to open the settings menu,
for ‘LaTeX Engine’ choose LuaLaTeX.

6.7.2 Cache your figures

By default, all your graphs would be re-generated each time you compile your document. Es-
pecially if you have lots of graphs, such as this document, this can take ages. The solution
for this is to cache the figures: generate them once and simply use the stored version in your
final document. For this, tikz provides the library external. To start using this library, put
\usetikzlibrary{external} and \tikzexternalize somewhere in your preamble. Keep in mind

34

that this requires the -shell-escape option to be set, for instructions on how to do this, see
section 6.5.1.
Once you included the package, you should be all set and LATEX will do its job. However, by default
all output files will be stored in the same folder as your .tex file and it will quickly become a mess.
I advise to create a directory specifically for storing these cache files, and specifying that folder as
output folder with \tikzexternalize[prefix=<folder name>/] (pay attention to the / after the
folder name!).
By default, when figures have errors, the compiler will not show them easily anymore and will
simply crash without good reason. For this, it is easiest to disable the caching for this one figure
only, by setting \tikzset{external/export next=false} just before the figure so it will skip this
figure for the caching. Possible errors will then pop up.

Note on the use of external with plot references

As explained in section 6.6 it is possible to refer to specific plots with \ref{<name>}.
This call will draw the icon of the plot itself, which itself is a figure, hence it will be
externalized by this library. This will lead to some conflicts that are described in the
manual of tikz. The easiest workaround is to skip the externalization for these references
using \tikzset{external/export next=false}, put that just before the \ref{} call
and everything should be fine

Note on the use of external with the custom vectors

The improved vector, defined in section 3.6, makes use of a tikz figure. Externalizing
these will give errors, so uncomment the line that sets that the next line should be
skipped (remove the %) to prevent any trouble.

35

36

	Setting up
	Installation
	Windows, Linux, OS X
	Online

	Structure of a LaTeX document
	Document class
	Packages
	Environments
	Example document

	Text formatting
	Titling
	Text sizes
	Text styles
	Paragraphs and alignment
	Lists
	References

	Mathematics
	Environments
	Symbols
	Functions and other operations
	Brackets
	Custom alphabets
	Accents
	The physics package
	The siunitx package

	Tables & Matrices
	Columns
	Rows and lines
	Spanning
	Matrices

	Figures
	Floating environments
	Wrapping text
	Captions
	Subfigures
	Including pictures
	Float barriers

	Graphs
	Basics
	Function plots
	2D plots
	3D plots

	Data plots
	Simple coordinates
	External source

	Error bars
	Fitting a function
	Setting up gnuplot
	Calling gnuplot
	Making a fit
	Incorporating error bars

	Legend entries
	Improving performance
	Using LuaLaTeX
	Cache your figures

